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The hydrodynamic behavior observed for a sphere released under gravity in a Newtonian liquid is not
consistent with that predicted by classical continuum theory when the sphere is near a solid wall. An irrevers-
ibility arises in the velocity of the sphere as it approaches and recedes from the plane that cannot be accounted
for using continuum hydrodynamic equations alone. Earlier experiments on spheres falling from a plane were
conducted under conditions such that this irreversibility could be attributed to the surface roughness of the
spheres. In this investigation, we extend these studies to situations where the pressure field between the
receding sphere and the plane drops to the vapor pressure of the fluid and cavitation occurs. Experimental data
supports the theoretical prediction for a sphere’s motion based on the irreversible effect of cavitation.
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I. INTRODUCTION

Understanding the governing phenomena of the motion
between a sphere and a plane is essential for the advance-
ment of our physical understanding of near-contact particle
interactions. These interactions dominate the behavior of
concentrated granular and suspension flows. Previous experi-
ments have made significant progress toward correlating
measured surface features of a non-colloidal particle to its
near-contact behavior. Examples include the observations of
spheres falling from mica sheets �1�, passing in shear flows
�2�, rebounding from coated surfaces �3,4�, and rolling down
planes �5,6�. Still, the model for perpendicular motion be-
tween a sphere and plane is incomplete, as the irreversible
nature of this motion has been studied only for a limited
range of system parameters.

Classical continuum hydrodynamic theory provides a
closed-form solution for a perfectly smooth sphere falling
under a constant force toward a smooth plane in a Newtonian
fluid at low Reynolds number. This solution predicts that the
velocity of a sphere approaching a plane decreases in propor-
tion to the decreasing separation distance but never reaches
zero. It also predicts that the approaching and receding ve-
locities are mirror images of each other and differ only in
sign.

According to this solution, a sphere released from a cer-
tain position to settle for an arbitrary length of time toward a
plane would never contact the surface, and upon reversal of
the force on the sphere, it would take the same amount of
time for the sphere to return to its original position. This
reversible behavior is only observed experimentally if the
sphere is not allowed to come too close to the plane. Once it
comes to within a certain minimum separation distance, the
sphere will take the same length of time to return to its start-
ing distance no matter how long it was left to settle �1�. To
predict the behavior of a sphere in motion near a plane, the

source or sources of this irreversibility must be understood.
One source of irreversibility might be the breakdown of

the continuum approximation in very small gaps. The fact
that real fluids are not infinitely divisible is one obvious
source of error in using the continuum assumption to analyze
this problem. A sphere cannot be expected to continue ap-
proaching a plane when the gap between the two has reached
the molecular dimensions of the fluid. The simulations of
Challa and van Swol �7� showed that solvation forces be-
come important when the gap is on the order of the fluid
molecule size. This predominantly repulsive force would
cause the approach velocity of a sphere falling under gravity
to differ from its recession velocity. Other forces that would
have irreversible effects on the velocity of a sphere are elec-
troviscous �8� and van der Waals forces �9�, which are sig-
nificant only for very small, colloidal spheres.

For larger spheres, imperfections in the geometry of the
system are another cause for the irreversible behavior ob-
served. In this case, surface asperities determine the mini-
mum separation distance between the sphere and the plane
and, hence, the time required for the sphere to pull away
under the force of gravity. Smart and Leighton �1� deter-
mined the effective hydrodynamic roughness of a sphere by
measuring its fall time after allowing it to come to rest on a
smooth surface and then inverting the system. They report
that a sphere’s effective hydrodynamic roughness, inferred
from this fall time, is closely related to its physical roughness
over the range of physical parameters examined in their in-
vestigation. A goal of the present work is to examine sphere-
plane systems with a wider range of physical parameters.

The pressure drop generated behind a sphere as it falls
away from a plane may be predicted by solving the fluid’s
equation of motion in bipolar coordinates �10�, provided that
the fluid is Newtonian and undergoes only creeping flow.
The absolute pressure predicted in the region between the
sphere and the boundary wall can be less than the fluid vapor
pressure for spheres of more mass than those used in the
experiments of Smart and Leighton �1�. Under these condi-
tions, the fluid in the region of near-contact vaporizes, or
cavitates. In a vaporized state, the fluid is unable to maintain*heathc@lanl.gov
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the tensile stress between the sphere and the plane that would
exist in the liquid state, and the overall resistance on the
falling sphere is greatly reduced. The sphere must fall to the
distance where its pressure drop is no longer sufficient to
sustain cavitation and the gap region again contains only
liquid before its motion may be described by continuum hy-
drodynamics.

Evidence of cavitation in a different configuration has
been shown by Prokunin �5� and Ashmore et al. �6�, who
both obtained photographs of a vapor bubble in the region
between a rolling sphere and a plane where the absolute pres-
sure is reduced to the vapor pressure of the liquid. Calcula-
tions of spheres rebounding from liquid-coated surfaces per-
formed by Davis et al. �11� and Kantak and Davis �12�
predict that the tensile force between a rebounding sphere
and a plane is negligible while a vapor cavity is present.
Barnocky and Davis �3� have also observed that the veloci-
ties of certain spheres are not affected by the fluid during
rebound from a coated surface, due to cavitation in the film.

In this investigation, we focus on the fall times of suffi-
ciently massive spheres, immersed in liquid, to confirm the
presence and to quantify the effects of cavitation in certain
near-contact sphere-plane systems. In the following section,
the theoretical model for sphere-plane interaction is re-
viewed. Subsequent sections describe how irreversible phe-
nomena may be incorporated into the theory and how our
experimental data supports the cavitation prediction.

II. CLASSICAL CONTINUUM HYDRODYNAMIC THEORY

The exact solution to the Navier-Stokes equations for a
smooth sphere falling slowly toward a plane in an otherwise
unlimited fluid was obtained by Brenner �13� and Maude
�14� in bipolar coordinates. The drag force on the sphere,
expressed in the form of Stokes’ law modified by a correc-
tion factor due to the proximity of the solid surface, is writ-
ten as

F = 6��av� , �1�

where � is the fluid viscosity, a is the sphere radius, v is the
sphere velocity, and � is the correction factor for a sphere
falling perpendicular to a plane �15�. Stokes’ law is valid
only for “creeping flow” conditions, which require that iner-
tial forces on the fluid are negligible and only viscous forces
oppose the gravitational force on the sphere. The Reynolds
number �Re� for flow around a sphere is equal to av�s /�,
where �s is the sphere density. Creeping flow conditions may
be assumed for Re�0.1 �16�.

The exact value for � may be obtained from the infinite
series

��z� =
4

3
sinh ��

n=1

�
n�n + 1�

�2n − 1��2n + 3�

	� 2 sinh�2n + 1�� + �2n + 1�sinh�2��

4 sinh2�n +
1

2
�� − �2n + 1�2 sinh2���

− 1	 ,

�2�

where �=cosh−1�1+h /a�. The coordinate z is in the direction

of the sphere’s motion, and h is the minimum distance in this
direction between the plane and the outside radius of the
sphere as it falls. An approximation for � is given by

��z� 
 1 +
a

h
, �3�

which approaches the exact value for both small and large
gap widths �1�.

For a sphere settling in a finite container, an additional
correction factor must be incorporated to account for the lat-
eral solid boundaries �17�. This will be called the parallel-
wall correction factor k and will be expressed as

k =
6��av�

F
. �4�

Analytical solutions for k exist only for certain semi-infinite
boundary geometries, such as an infinitely-long circular cyl-
inder or two parallel plane walls �15�. For closed-ended cyl-
inders of circular and square cross-section, numerical tech-
niques have successfully been used to determine parallel-
wall correction factors �18–20�. However, for a closed-ended
rectangular tank, as is employed in our experiment, no ana-
lytical solution exists for k, and no previously-performed nu-
merical analysis provides us with an approximation. There-
fore, experimental techniques, as described in Sec. IV B, are
used to obtain an individual correction factor k for each
sphere, which accounts for the four lateral walls of our rect-
angular tank and the small inertial effects of the fluid on the
particular sphere.

It will be assumed that the correction factors � and k are
independent of each other and that their superposition yields
the overall velocity correction factor for the sphere falling in
the closed container. The combination of Eq. �3� with our
experimentally measured parallel-wall correction factor pro-
vides a more accurate value of the overall correction factor
for our system than is obtained from either a boundary ele-
ment simulation or a square-cylinder correction factor esti-
mate �21�.

Fall-time prediction

The Stokes’ velocity describing the motion of a sphere
falling in a fluid without boundaries is given by

vStokes =
2

9

g
�a2

�
, �5�

where g is gravity, and 
� is the difference in density be-
tween the sphere and the fluid. The velocity of a sphere
falling from the surface of a tank may be calculated by per-
forming a force balance for the quasi-static Stokes’ approxi-
mation for the motion of a sphere near a plane. The velocity
of the sphere as a function of z takes the form

v�z� = vStokes
k

��z�
. �6�

A sphere that falls with this velocity, where only viscous and
pressure forces exert appreciable effects, will be said to fall
“hydrodynamically.” If its velocity is large enough, the
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sphere will impact the plane elastohydrodynamically and un-
dergo deformations that will affect the flow. The inertia of
the sphere must dominate the viscous forces for elastic de-
formation to significantly affect its hydrodynamic behavior.
Davis et al. �11� estimate that elastohydrodynamic effects
become important for systems with Stokes numbers greater
than 5, where the Stokes number is defined as

St =
mv0

6��a2 .

Here, m is the mass of the sphere, and v0 is the sphere’s
velocity as it contacts the surface. Stokes numbers for the
spheres in this investigation were calculated to be on the
order of 10−6 or smaller, so elastic deformations are ne-
glected.

The predicted fall time for a sphere falling perpendicu-
larly from a plane is the integral with respect to z of the
inverse velocity from the starting distance h1 to the final
distance h2. The starting distance h1 is the point at which the
sphere begins to fall hydrodynamically from the plane. Due
to either the physical roughness or cavitation, h1 will be non-
zero, as explained in Sec. III, and the distance h1 is not
necessarily the sphere’s smallest achievable distance from
the plane. The only variable in Eq. �6� having z-dependence
is �, and by using Eq. �3�, a simple integration of the inverse
velocity may be performed to obtain

tp =
9�

2g
�a2k
��h2 − h1� + a�ln

h2

h1
�� . �7�

This symbolic representation, made possible by the use of
the approximation for �, allows us to examine the function-
ality of the various physical parameters on the predicted fall
time.

Because Eq. �3� always underestimates the exact value of
�, the predicted time calculated using Eq. �7� will always be
less than that calculated by integrating Eq. �2� exactly. Pre-
dicted fall times were calculated using Eq. �7� for the range
of spheres used in the experiment over the distance they
would fall in the tank. These values were compared to fall
times obtained using a finite-difference approximation to the
integral of the series solution for �. The maximum difference
between the integral of the approximate � and the approxi-
mate integral of the exact � is 2.5%. This maximum error in
the fall-time prediction occurs for the largest, most dense
sphere used in the experiment, and it will be tolerated in
order to retain the symbolic fall-time equation.

III. CONTINUUM HYDRODYNAMICS PLUS
IRREVERSIBILITY

The model to be tested in this investigation combines the
irreversible effects of near-contact interaction with the clas-
sical continuum hydrodynamic theory described in Sec. II.
The aim is to determine the starting distance h1 in Eq. �7�,
which results in an accurate fall-time prediction for spheres
of varying size, density, and surface roughness receding from
a near-contact condition. In this model, a fall time for a
sphere approaching a plane may be predicted for arbitrary

values of h1 and h2, up until the point where the sphere’s
surface roughness hinders its motion toward the solid bound-
ary. At this point, the sphere is entering the near-contact re-
gion. Arbitrary h1 and h2 values may also be used to predict
the receding fall time as long as the surface of the sphere
remains outside the near-contact region and surrounded by
liquid. An arbitrary starting distance h1 may not be used if
the sphere begins falling from within its near-contact dis-
tance.

The fall time of a noncavitating rough sphere, initially at
rest on its surface features, may be predicted from Eq. �7� if
its effective hydrodynamic surface roughness is used as the
initial gap width h1. Conversely, the definition of the effec-
tive hydrodynamic surface roughness �e is the initial gap
width inferred from a fall-time measurement of a sphere,
initially at rest, receding from a plane �1�. A false �e value
will be obtained, however, if the sphere is small enough to be
affected by colloidal forces or massive enough to cause the
fluid to cavitate behind it as it falls. To determine if cavita-
tion will occur, the pressure drop in the region between the
plane and the sphere must be calculated using classical hy-
drodynamic theory.

A. Pressure drop

The first-order term in the Taylor series expansion of the
solution for the change in fluid pressure at the point of clos-
est approach between a sphere and a plane is given by �22�


p =
�1 −

h

a
�3�va

h2 . �8�

Reversible behavior is observed in this model, so the pres-
sure drop for a receding sphere will be equal in magnitude
but opposite in sign to that for an approaching sphere. This
solution is valid for small gap widths only �h /a�1�, and for
very small gap widths, the h /a term is insignificant. The
nondimensional gap widths over which cavitation is ex-
pected for the spheres in the current experiment are O�10−3�,
so the h /a term will be ignored �21�. Substituting Eq. �6� for
v, and using Eq. �3� for �, the 
p value may be approxi-
mated for small gaps as


p 

2

3

g
�a3k

�h2 + ah�
. �9�

Equation �9� will be used to estimate the pressure drop be-
hind a sphere that begins with its physical roughness features
in contact with a plane and then, after the direction of the
force acting on the sphere is reversed, separates from the
plane. By subtracting 
p from the tank fluid pressure, the
total pressure in the gap is calculated, which determines the
phase of the fluid. Hydrostatic pressure gradients are ignored
in this pressure calculation. As long as the total pressure is
less than the vapor pressure of the liquid, the upward force
acting on the sphere will be greatly reduced from that in the
noncavitating case �11,12�. In particular, the sphere will fall
quickly to the point at which the pressure in the gap is
greater than the vapor pressure, where it will begin to fall
according to Eq. �6�.
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The quadratic formula may be used to calculate the cavi-
tation distance h
p, which is defined by the value of h for
which the pressure drop is equal to the difference between
the atmospheric pressure patm and the vapor pressure pvap of
the liquid. That is, the cavitation distance is the distance from
the plane where cavitation ceases and the sphere begins to
fall hydrodynamically, and it is found to be

h
p =
a

2
�− 1 +
1 +

8

3

g
�ak

�patm − pvap�
� . �10�

Only the positive square root is considered, because the dis-
tance h
p must be positive.

If the sphere’s physical roughness asperities prevent it
from coming as close as h
p from the plane, the liquid will
not cavitate during separation, and the sphere will fall hydro-
dynamically from an initial gap width equal to its effective
hydrodynamic roughness. Smart and Leighton �1� obtained
effective hydrodynamic surface roughness values that were
between the average roughness and the maximum peak-to-
valley roughness values measured directly on their sphere
surfaces. If the effective hydrodynamic roughness is smaller
than h
p, in our model, the initial distance from which the
sphere falls hydrodynamically is h
p. Retaining the h /a term
in Eq. �8� results in a difference in cavitation distance of less
than 0.5% for the spheres used in the present experiment.
The corresponding fall-time difference is less than 2 ms,
which is much smaller than the uncertainty in the timing of
our experiments, to be discussed in Sec. IV.

From the pressure drop solution provided by Brenner
�10�, the fluid state may be determined at any radial distance
from the point of closest approach at the center, provided it
remains within the small gap region �where h /a�1�. Using
this solution, the radius of the area of cavitation may be
calculated as the sphere’s distance from the plane increases.
The cavitation area increases from zero radius, as the sphere
begins its separation, to its maximum radius. At this point,
the region of vaporized fluid is a thin disk of very little
volume. For the spheres that are predicted to cause cavitation
in the current experiment, the ratios of maximum cavity di-
ameter to cavity thickness were calculated to be greater than
70. From its maximum size, the cavity’s radius is predicted
to shrink smoothly back to zero. The time scale for the evo-
lution of the vapor cavity is unknown, so the acoustic effects
of the collapse are uncertain. Because the cavity is highly
aspherical, the role of acoustic emission in the damping of
the bubble collapse is expected to be small �23�. In our
model, when the vapor bubble has disappeared the sphere is
expected to immediately begin its hydrodynamic descent,
unaffected by the bubble collapse.

B. Cavitation prediction

In order to compare spheres of different density, radius,
and roughness, a nondimensional parameter called the cavi-
tation number will be used. The cavitation number C is de-
fined as the pressure drop required to vaporize the liquid
normalized by 
p0, the dynamic pressure drop generated by
the moving object �24�, and it takes the form

C =
patm − pvap


p0
. �11�

The dynamic pressure drop for a near-contact sphere will be
defined as the maximum pressure drop that would be gener-
ated by the sphere as it fell from a plane if no cavitation
occurred. This value is calculated from Eq. �9�, using the
sphere’s effective hydrodynamic surface roughness �e as the
minimum separation distance, and it is given by


p0 =
2

3

g
�a3k

��e
2 + a�e�

. �12�

A sphere of cavitation number less than 1 will develop a
dynamic pressure drop larger than that required to vaporize
the liquid. Different measures of physical surface roughness
may be obtained by surface profilometry, but, as will be dis-
cussed later, it is difficult to select the physical roughness
value that matches the sphere’s effective hydrodynamic
roughness value.

IV. EXPERIMENT

Experimental tests were performed in a rotatable liquid-
filled tank of inner dimensions 17.145	12.065	12.065
cm3, as shown in Fig. 1. A freshly cleaved mica disk was
attached to the bottom of the tank to provide a molecularly
smooth surface. Hence, most of the roughness effects on a
sphere’s motion may be attributed to its own surface fea-
tures. The rotation mechanism was designed so that the axis
of rotation was aligned with the bottom surface of the tank.
This feature ensured that moments induced on the sphere by
the fluid during rotation were minimized in the region of the
sphere-plane contact point.

While the tank was in its upright position, a sphere was
allowed to settle toward the mica sheet for a time longer than
that for which the motion was known to be reversible. To
reverse the motion of the sphere, the tank was inverted over

FIG. 1. Experimental tank in upright and inverted positions.
Fall-time measurements were made as the sphere traveled distances
d1 and d2 on both approach and recession from the mica disk af-
fixed to the tank bottom. The fall time obtained for d2 characterizes
the experimental system, and the time for d1 provides information
about the near-contact interaction between the sphere and the plane.
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a period of less than 1 s. At the midpoint of the rotation of
the tank, the stopwatch was started, and the time was marked
as the sphere passed the lines on the tank demarcating dis-
tances d1 �3.19 cm from the mica� and d2 �5.70 cm from d1�.
Lines at equal distances on both the front and back of the
tank were visually aligned during each time measurement.
The experimental measurement of interest is the time elapsed
between when the tank was inverted and when the sphere
had traveled distance d1.

The fall time over distance d2 was measured as the sphere
fell toward the mica sheet and again as it fell away. The
average fall time over d2 for all repetitions of an experiment
was used to determine the parallel-wall correction factor for
each sphere, as will be explained in Sec. IV B. The number
of repetitions performed for an experiment depended on the
total time required for the sphere to fall. As few as 6 and as
many as 49 trials were performed for particular spheres. This
resulted in a fall-time uncertainty of less than 1.2%, based on
a level of confidence of 95% for each experiment �21�.

A. Physical measurements

Polyalkalene glycol liquids of two different viscosities
were used as the experimental fluids, UCON 75-H-90000
and UCON 75-H-9500 �Dow Chemical Co., Midland, MI�.
The liquid viscosity for each experiment was chosen to en-
sure that the fall time for each sphere was long enough to
measure accurately yet short enough to repeat a statistically
significant number of times in a single laboratory session.
The less viscous 75-H-9500 liquid was used for all brass
spheres and for the tungsten carbide spheres smaller than 1.2

mm in radius. All other experiments were performed using
the 75-H-90000 liquid.

The liquid viscosity is strongly dependent on temperature,
so thermally stable laboratory conditions were essential to
minimize viscosity gradients inside the tank. The ambient
laboratory temperature was measured to be 21.72
0.36 °C
during the period that the experiments were performed. Fluid
densities and viscosities were measured for both types of
liquid at temperatures between 19 and 26 °C, a range much
larger than that observed in the laboratory. Temperature-
viscosity functions were developed from Ubbelohde viscom-
eter tube measurements and used to determine the fluids’
viscosity ranges for the small range of thermal conditions in
the laboratory �21�. The resulting viscosities were
46.76
0.55 Pa s and 5.05
0.16 Pa s for the 75-H-90000
and 75-H-9500 liquids, respectively. A temperature-density
relationship was also established from pycnometer measure-
ments and yielded a density of 1091.86
0.39 kg /m3 for
both types of liquid over the laboratory’s temperature range
�21�.

A range of sizes of tungsten carbide �WC� and brass �Br�
spheres were used in the experiments to test the functionality
of the cavitation model. Single spheres of hardened chrome
steel �CS� and aluminum oxide �AO� were also used to com-
pare the hydrodynamic behavior of different materials.
Sphere radii ranged from 6.34 to 0.153 mm, and statistics for
each sphere are presented in Table I, in order of increasing
cavitation number. Because spheres of the same material
were found to have somewhat different density and rough-
ness values, the order of increasing cavitation number is not
necessarily the order of decreasing radius for a sphere series.

TABLE I. Sphere statistics.

Material Grade a �mm� �s �kg /m3� �a �nm� �q �nm� �p �nm�

WCa 25 6.340
0.0025 14791
17 17
1 20
2 105
11

WCa 25 3.172
0.0017 14996
24 24
6 30
7 195
35

WCa 25 2.380
0.0025 15022
47 22
6 26
7 105
25

CSa 3.171
0.0028 7806
10 35
11 49
22 355
317

WCa 25 2.775
0.0025 14909
40 67
26 90
32 788
186

WCa 25 1.988
0.0025 14924
56 41
6 53
7 442
106

WCb 25 1.186
0.0025 15161
96 17
5 21
6 112
25

WCa 25 1.587
0.0009 14942
25 32
11 41
19 221
170

WCb 25 0.795
0.0013 14789
73 27
8 31
9 137
40

AOa 3.171
0.0022 3848
8 68
25 148
81 2507
1189

Brb 200 2.002
0.0025 8759
33 255
99 321
124 2325
258

WCb 25 0.598
0.0025 14214
179 43
8 56
11 422
90

WCb 25 0.398
0.0009 14758
107 22
7 27
9 133
45

Brb 200 1.586
0.0015 8523
24 316
63 455
107 4515
597

Brb 200 1.193
0.0008 8519
17 196
34 261
37 2878
418

Brb 200 0.798
0.0016 8342
50 355
145 466
186 3275
625

Brb 200 0.598
0.0018 8444
77 245
22 313
18 2360
642

Brb 200 0.405
0.0016 8384
106 295
99 364
108 2198
478

Brb 200 0.260
0.0026 8178
281 349
158 459
223 3110
1261

aFluid used in experiment: UCON 75-H-90000.
bFluid used in experiment: UCON 75-H-9500.
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For example, the WC sphere of radius 1.186 mm has a
smaller cavitation number than the 1.587 mm sphere, due to
its larger density and smaller roughness. Radius values were
obtained from multiple diameter measurements for the larger
spheres, using a Starrett digital caliper. The smaller spheres
were measured using a Nikon MM-60 measuring microscope
�Nikon Corp., Yokohama, Japan� and the diameter calcula-
tion function of a Quadra-Chek 200 geometric readout �Met-
ronics, Inc., Bedford, NH�. Material densities were calcu-
lated from radius and mass measurements and are listed for
each sphere in Table I. The mean values for the WC, Br, CS,
and AO spheres were 14857, 8588, 7806, and 3848 kg /m3,
respectively.

The series of WC spheres was chosen to demonstrate the
presence of cavitation. These were predicted to be massive
enough to generate the pressure drop required for cavitation
while still falling slow enough to assure the creeping flow
condition required by Eq. �1�. The Reynolds number associ-
ated with the terminal velocity of the most rapidly falling
sphere was calculated to be 0.017, and the fluid shear rate at
the equator of the falling sphere was calculated to be less
than 11 s−1 for all experiments. Previous measurements have
shown UCON liquids to be Newtonian up to shear rates of
103 s−1 �25�.

To examine the irreversible behavior of both cavitating
and noncavitating systems using commercially available
balls, it was necessary to perform experiments with spheres
of different materials. Since the lower size limit of commer-
cially available WC balls had already been reached, Br balls
were selected for the noncavitating experiments. Much
smaller diameters were available in this material, although
the surfaces were not to be nearly as smooth as the WCs, due
to the ductility of the Br. Commercially produced balls must
conform to the standards of ANSI/AFBMA Std. 10-1983,
which prescribes specific dimensional tolerance requirements
for each ball grade. All WC spheres were ordered to be grade
25, which has a basic diameter tolerance of 
0.0025 mm, a
maximum deviation from spherical form of 0.0006 mm, and
an upper limit for average surface roughness of 51 nm. Av-
erage roughness �a is defined as the average of every surface
height data point Zi acquired over the sample area, where Zi
is the distance from the measured point to the mean plane. It
is written as

�a =
1

N
�
i=1

N

�Zi� ,

where N is the number of data points. Brass spheres were
obtained in the best grade available, grade 200, which has a
basic diameter tolerance of 
0.025 mm, an allowed spheri-
cal deviation of 0.005 mm, and a maximum �a of 203 nm.
Because the effective hydrodynamic roughness is closely re-
lated to the physical surface roughness for noncavitating
spheres, the cavitation numbers for the grade 200 Br spheres
are larger than they would have been for grade 25 Br
spheres.

A variety of measures is available to quantify physical
surface roughness, but no directly-measured quantity has
been shown to equal the effective hydrodynamic roughness

of a sphere. The appropriate measure of the physical rough-
ness to use in calculating the dynamic pressure drop from
Eq. �12� is, therefore, uncertain. Of the spheres investigated
in the experiment, none had a smooth surface with protru-
sions of a uniform height that could be used as an obvious
physical roughness value. Rather, the manufacturing pro-
cesses used to polish the spheres leave the surfaces covered
with nonuniform asperities, scratches, and pits, resulting in
profiles that cannot be easily quantified by a single number.
Surface height profiles were obtained by interferometry for
each sphere using a Wyko NT2000 Optical Profiler �Veeco
Metrology Group, Tucson, AZ�, and statistical values includ-
ing average, peak, and root-mean-square �rms� roughness
were calculated. Peak roughness �p is the height difference
between the highest point and the lowest point measured in a
sample area, and rms roughness �q is defined as

�q =
 1

N
�
i=1

N

Zi
2.

The Vision32 software used to analyze the acquired data uses
the digital approximations for the three-dimensional average
and rms roughnesses given by

�a =
1

MN
�
j=1

M

�
i=1

N

�Zji�

and

�q =
 1

MN
�
j=1

M

�
i=1

N

Z2�xi,yj� , �13�

where M and N are the number of sampled data points in the
x and y direction, respectively �26�. The average and peak
roughnesses may be referred to as the “minimum” and
“maximum” roughness values for a sample area. The rms
roughness, as calculated by Eq. �13�, is equivalent to the
standard deviation of the surface height data, and it will be
the preferred value for characterizing a sphere surface in our
study. rms roughness is more sensitive to large surface fea-
tures than average roughness and more repeatable than peak
roughness.

The sample area over which these roughness values were
calculated was determined by the ball size and an initial sup-
position of the roughness value. We define the supposed
roughness �s to be the maximum allowable �a for the sphere
grade. Using the estimate for the interaction area of 2��sa
provided by Smart and Leighton �1�, area sizes appropriate
for each sphere were calculated. Average, rms, and peak
roughnesses were evaluated over these areas for each sample
obtained on each sphere.

Two sets of six samples taken at random locations on the
same sphere were obtained for the brass spheres of radii
0.260 and 1.586 mm. For both spheres, mean values of �a,
�q, and �p for the first set of six samples agreed with the
mean values for the second set of six samples to within the
95% confidence limits determined for the sample sets. Hav-
ing established the sample size of six as being statistically
adequate, surface profile samples were acquired at six ran-
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domly selected locations around the surface of each sphere.
The mean values of �a, �q, and �p are listed for each sphere
in Table I, with uncertainties equal to the standard deviation
of the six samples. It may be noticed that one WC sphere and
all but one Br sphere had values of �a that were larger than
the limit set by their grade. The mean of all �q values ob-
tained for the WC spheres was 39 nm, and the mean for the
Br spheres was 377 nm.

The question may arise as to whether the surface rough-
ness should be added to or subtracted from the sphere’s ra-
dius for the purpose of calculating the predicted fall time.
Upon investigating Eq. �7�, it may be found that tp is much
more sensitive to incremental changes in the parameter h1
than to changes in a. This indicates that the importance of
the surface roughness lies in its effect on the initial gap width
and not the sphere’s radius. The measured radius uncertain-
ties were approximately 2 �m, which is more than 4 times
greater than any of the spheres’ �q values. Therefore, the
spheres’ measured radius values will not be modified to in-
clude the surface roughness for calculation of the predicted
fall times.

The surfaces of the WC series and the Br series were
qualitatively similar, having been polished with the same
grinding and lapping technique. Height profiles for these
spheres were mostly random, with the Br surfaces exhibiting
more deep pits than the WC. The CS sphere had very few
pits but many long scratches, and the surface of the AO
sphere was dominated by pits.

The effective hydrodynamic roughness �e for a particular
sphere is expected to be bounded by the minimum and maxi-
mum physical roughness �1,9,27�, but these measurements
can differ by as much as two orders of magnitude. The actual
�e value may only be obtained by performing a fall-time
measurement on a noncavitating system. Smart and Leighton
noted that the �e values inferred from their fall-time mea-
surements were greater than their average roughness values
and close to one-half of their peak roughness values �1�. In
the following section, fall times for noncavitating systems
will be used to relate our rms roughness measurements to
effective hydrodynamic roughness values for our spheres.

A new mica disk was cleaved, characterized, and attached
to the tank bottom each time the liquid in the tank was
changed. Grade V-4 muscovite mica �Structure Probe, Inc.,
West Chester, PA� was used, which provided a smooth layer
of molecules for the near-contact interaction with the rough
sphere. Three different mica disks were used in the experi-
ments, and roughness measurements were obtained for six
sample areas on each disk, using a Wyko RST Plus Optical
Profiler �Wyko Corp., Tucson, AZ�. rms roughness values
were evaluated over sample areas of 50 �m diameter, a size
comparable to the interaction areas for the largest spheres.
The mean of all �q values measured for the mica disks was
0.7 nm. Being more than an order of magnitude smaller than
the roughness values of the spheres, the mica roughness will
be neglected in the determination of the initial gap between
the sphere and the plane.

Other parameters required to calculate cavitation numbers
and distances are gravity and the pressure drop necessary for
fluid vaporization. The local value for gravity used in our
calculations was estimated by the National Geodetic Survey

of the National Oceanic and Atmospheric Administration in
1977. Elevation and a Bouguer anomaly are accounted for in
the value of 9.791 11
0.000 04 m /s2. The average value
for the local atmospheric pressure over the course of the
experiments was 787 kPa with deviations of up to 23 kPa
due to changing weather conditions. The vapor pressure re-
ported on the MSDS for both varieties of UCON oil was 1.3
Pa. In calculating the cavitation distance from Eq. �10�, we
assume equilibrium behavior with no delay in the liquid va-
porization or bubble collapse.

B. Parallel-wall correction factor measurement

The parallel-wall correction factor for a sphere is deter-
mined from a measurement of the time that it takes to fall
distance d2 in the experimental tank. The effect of the verti-
cal tank walls may be measured by comparing the velocity of
the sphere in this section with its Stokes’ velocity. In this
region of the tank, the velocity of the sphere is independent
of the surface roughness �28�. Also, the end effects of the top
and bottom tank surfaces will be considered negligible, be-
cause the bottom surface is removed by at least five particle
radii for all spheres �20,29�. Therefore, the perpendicular-
wall correction factor � will be considered one, and we will
use the ratio of the measured velocity to vStokes to calculate
the correction factor due to the four lateral walls. By using
the expression

k =
v

vStokes
�14�

in Eq. �7�, the physical parameters g, 
�, a, and � are elimi-
nated from the fall-time prediction for noncavitating spheres.
Smart and Leighton similarly remove the importance of
these quantities by normalizing their experimental fall time
with the fall time of the same sphere through a distance
farther away from the plane �1�. The values of g, 
�, a, and
� are still required to calculate a cavitation distance, so for
spheres of C�1, the fall-time prediction is not independent
of these parameters.

C. Experimental results

Measured fall times are compared to predicted fall times
to determine the validity of the cavitation hypothesis. The
expression given by Eq. �7� is used to predict the time a
sphere will take to fall through the liquid from an initial
distance from the plane, h1, to a final distance, in this case,
d1. These fall-time predictions were calculated for each
sphere using three different initial distances, the sphere’s rms
roughness, the sphere’s peak roughness, and the sphere’s
cavitation distance. In Fig. 2, these three fall-time predictions
are indicated for each sphere by a triangle, a diamond, and a
circle, respectively. A profile of the sphere’s fall time is in-
cluded as either a solid or dashed line, which represents the
sphere’s total fall time starting from an arbitrary initial dis-
tance from the plane. The solid line profiles and open sym-
bols are used for the six WC balls dropped in the 75-H-
90000 liquid. The cavitation numbers for these spheres are
all less than 1, whether the minimum or maximum roughness
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is used to calculate C. The dashed line profiles and solid
symbols are used for four Br balls dropped in the 75-H-9500
liquid. The cavitation numbers for these spheres are all
greater than 1 if the peak roughness is used to calculate C.
The experimentally-measured fall time for each sphere is in-
dicated by an asterisk.

The initial gaps implied by the experimental measure-
ments for the WC spheres of C�1 are consistent with the
hypothesis that the spheres are falling hydrodynamically
from their cavitation distances rather than their physical
roughness heights. The error bars indicating the 95% confi-
dence limits of the measured times are smaller than the sym-
bols used to represent the data points. The initial gaps im-
plied by the experiments using the Br spheres of C�1 are
very close to the measured physical roughness values of the
spheres.

In the classical hydrodynamic model, the time predicted
for a sphere to fall from a plane is inversely related to the
density difference between the sphere and the liquid, as can
be seen from Eq. �7�. For a sphere of radius 3.17 mm falling
through a liquid of viscosity 46.76 Pa s from an initial gap
of 80 nm, the predicted fall time as a function of density
difference is calculated to be

tp,no cavitation = 175 827�
��−1 �15�

if no cavitation occurs. However, this relationship is lost
when the sphere’s initial gap is equal to its cavitation dis-
tance, which is a function of the density difference. By sub-
stituting h
p into the symbolic approximation to the fall time
given by Eq. �7�, the more complicated dependence of tp on

� may be seen. Assuming cavitation does occur in the sys-
tem described above, the inverse relationship of Eq. �15�
becomes a power-law function of 
� given by

tp,cavitation = 222 476�
��−1.0492. �16�

The parallel-wall correction factor used to generate Eqs. �15�
and �16� was taken to be 0.885, the average of the measured
k values for the three spheres of radius 3.17 mm used in the
experiment. The k values measured for the AO, CS, and WC
spheres were 0.882, 0.886, and 0.887, respectively. The
mean �q value for these three spheres, 80 nm, was used as
the initial gap width in the calculation of Eq. �15�.

Figure 3 shows the measured fall times for the three
spheres of radius 3.17 mm studied in the 75-H-90000 liquid,
which were all expected to cavitate during separation. The
functions of Eqs. �15� and �16� are shown for comparison,
and the data points agree well with Eq. �16�, which includes
cavitation in the hydrodynamic model. The 95% confidence
limits are contained within the dimension of the data point
symbols.

To compare experiments spanning four orders of magni-
tude of cavitation number performed with different materials
and fluid viscosities, a unitless representation of the data is
helpful. The data is nondimensionalized by dividing the ex-
perimental time by tStokes, the time the sphere would take to
fall through a certain distance at its Stokes’ velocity. This
velocity will be integrated over the distance d1, yielding

tStokes =
9��d1�
2g
�a2 . �17�

The chosen distance d1, while arbitrary, represents a charac-
teristic length scale for the present experiment.

The nondimensional parameter S will be defined as

S =
t�e

− tmeas

tStokes
, �18�

where t�e
is the time predicted using Eq. �7� for a sphere to

fall from its effective hydrodynamic roughness to d1, and
tmeas is the time recorded for the sphere to fall to d1 in the
experimental tank. A large value of S indicates a measured
time that is much smaller than the fall time predicted assum-
ing the sphere fell hydrodynamically from its �e value. The
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FIG. 2. Total fall time vs initial distance from the plane for six
WC spheres and four brass spheres. Predictions for WC spheres are
displayed as open symbols and solid lines, and predictions for brass
spheres are displayed as solid symbols and dashed lines. From the
measured fall time, indicated by an asterisk, the initial distance of a
sphere from the plane is inferred. The initial distance implied by
each WC experiment is greater than both the rms roughness and
peak roughness for a particular sphere and is in agreement with the
predicted cavitation distance. Initial distances implied by the brass
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�e for a noncavitating system is the roughness value used to
minimize S, as explained below. The four smallest Br
spheres have cavitation numbers greater than 1 regardless of
whether their minimum or maximum roughness is used, so
they may be considered noncavitating systems. A relation-
ship between measured rms roughness and effective hydro-
dynamic roughness will be determined from the fall-time
measurements of these four spheres by minimizing a gener-
alized error function.

The generalized error between the measured and pre-
dicted values for these experiments is defined as the sum of
the absolute values of S for the four smallest Br spheres,
written as

E = �
n=1

4

�SBrn
� .

The generalized error E was calculated using a range of nor-
malized roughness values for t�e

�21�. The roughness was
normalized by 377 nm, the mean of the �q values measured
for all seven Br spheres. The minimum E value, 0.076, cor-
responded to a normalized roughness of 1.5, implying that
the measured rms roughness provides a slightly low estimate
of the effective hydrodynamic roughness for these Br
spheres. The �q value for each Br sphere will, therefore, be
increased by a factor of 1.5 to obtain the �e value for use in
the data analysis. Noting the qualitative similarity between
the Br and WC surfaces, the same factor will be applied to
the �q values of the WC series. With these effective hydro-
dynamic roughness values, we may now calculate specific
cavitation numbers for all spheres and predict fall times for
spheres with C�1. As mentioned in Sec. IV A, the unmodi-
fied radius measurement is used to calculate the predicted
fall time for a sphere. The effective hydrodynamic roughness
will simply be imposed on the outer surface to set the lower
limit on the gap between the sphere and the plane.

A predicted value for S may be calculated using Eq. �7� to
predict tmeas using the cavitation distance as the initial gap
for spheres of C�1. After reduction,

Spred =
1

k�d1��h
p − �e + a�ln
h
p

�e
�� . �19�

Because h
p may be replaced with �e for noncavitating
spheres, Spred is zero for all spheres of C�1, regardless of
material. In Fig. 4, the Spred values for all spheres are shown
as circles. These predictions are obtained using the values of

�, k, and �e calculated individually for each sphere. A
cavitation-dominated irreversibility for the near-contact in-
teraction is predicted by a nonzero Spred value, and a
roughness-dominated irreversibility is predicted by a zero
value. The experimental measurements for the WC and Br
spheres are shown by triangles and inverted triangles, respec-
tively.

The error bars for each data point were obtained by propa-
gating the uncertainty in each physical measurement to the
uncertainty in S. For an expanded version of Eq. �18�, given
by

S =
1

kd1
�h2 − �e + a�ln

h2

�e
�� −

tmeas

d1

2g
�a2

9�
, �20�

error propagation formulas were used to determine the un-
certainty due to each parameter and, finally, the overall un-
certainty in S for each data point �21�. The uncertainty asso-
ciated with the parallel-wall correction factor is the dominant
source of the overall uncertainty, contributing 30–80% for
each sphere. The roughness measurement uncertainty is the
next most significant, accounting for as much as 54% of the
overall error bar length.

Each experimental data point agrees with its correspond-
ing prediction to within the uncertainty of the measurement,
and the divergence of tmeas from t�e

is apparent for small
cavitation numbers. Both the WC and brass spheres below
C=1 match the cavitation predictions, and the Br spheres
above C=1 match the roughness predictions. Fall times for
all cavitating spheres, which are independent of their esti-
mated �e values, were predicted to within 3%. The initial gap
for these cavitating spheres could be predicted based on
knowledge of just the atmospheric and vapor pressures, be-
sides the values of g, 
�, a, and k, which are required for the
basic hydrodynamic fall-time predictions. Although the val-
ues of �e are not necessary to calculate fall times for cavitat-
ing spheres, they are required to calculate C values, which
provide a measure of the likelihood that cavitation will oc-
cur, a useful parameter in the comparison of data points for a
variety of sphere-plane systems. Fall times for the noncavi-
tating spheres, which are highly dependent on the estimated
�e values, were predicted to within 4%.

The transition from one irreversible behavior to another at
C=1 is evident. Fall times for the WC spheres and the larger
Br spheres agree with the cavitation prediction, and those for
the smaller Br spheres agree with the roughness prediction.
The fact that the data points for the Br spheres match the
predictions to within the measurements’ uncertainties con-
firms that 1.5�q is an appropriate value to use for �e. While
the effective hydrodynamic roughness does not affect the fall
time for cases in which C�1, it is the dominant source of
irreversibility for cases in which C�1.
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FIG. 4. Cavitation number vs S. An effective hydrodynamic
roughness value equal to 1.5 times the sphere’s rms roughness was
used for both the tungsten carbide and brass sphere series. Experi-
mental data is consistent with the cavitation model for C�1 and the
physical roughness model for C�1.
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V. CONCLUSIONS

By conducting simple, well-characterized macroscale ex-
periments, data is obtained revealing microscale information
about near-contact interactions. The experimental data con-
firms that classical continuum hydrodynamic theory may be
used to model the motion of a sphere falling from a plane if
the correct initial gap distance is known. If the cavitation
number for the system is greater than 1, this initial gap is
equal to the effective hydrodynamic surface roughness. If the
cavitation number is less than 1, the cavitation distance
should be used as the initial gap. This is the distance over
which the fluid behind the sphere is in a vapor state and
cannot sustain the stress predicted by the hydrodynamic
equations.

The cavitation number is highly dependent on the physi-
cal roughness of the sphere surface, and for a system with a
cavitation number very close to 1, the dominant source of
irreversibility is difficult to determine. Effective hydrody-
namic roughness values were found to exceed physical rms
roughness values by a factor of 1.5. This is consistent with
the finding of Smart and Leighton �1� that the measured ef-
fective hydrodynamic roughness is of the same order as the
physical surface roughness. However, this particular relation-
ship may not hold for all sphere grades or materials. Infer-
ring an initial gap from a sphere’s measured fall time re-
mains the only reliable method of determining an effective

hydrodynamic surface roughness and, hence, an accurate
cavitation number. With knowledge of the system’s cavita-
tion number, the irreversibility exhibited in a macroscale
sphere-plane interaction at low Reynolds number may be
attributed to either physical roughness or cavitation.
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